Sustainable Innovations in Poultry Farming: Valorization of Waste, Circular Economy, Fly Control and Odour Management

Prof. Ganapati D. Yadav

D. Sc. (Hon. Causa, DYPUK),, D.Eng. (Hon. Causa, NIT-A), NAE (US), FNAI (US), FTWAS, FNA, FASc, FNASc, FNAE, FRSC

Bhatnagar Fellow & National Science Chair (Govt. of India) Emeritus Professor of Eminence

Former Vice Chancellor and R.T. Mody Distinguished Professor & Former Tata Chemicals Darbari Seth Distinguished Professor of Leadership & Innovation

INSTITUTE OF CHEMICAL TECHNOLOGY, MUMBAI

IndianOil Odisha Campus, Bhubaneswar & Marathwada Campus Jalna Distinguished Visiting Professor IIT Guwahati Adjunct Professor, University of Saskatchewan, Canada Distinguished Adjunct Professor SOA University, Bhubaneswar

900,000 cows

1.4 million goats

1.7 million sheep

3.8 million pigs

12 million ducks

202 million chickens This means that every average minute 140,000 chicken get slaughtered

Hundreds of millions of fish

 202 million chickens slaughtered per day
140,000 chickens per minute
Chickens the most slaughtered land animal.

Source: OurWorldinData.org (2021)

Poultry and Proteins

- Poultry: One of the largest portions of food industry
- Protein ingredients: 38 billion USD (2019) growing at 9.1 % p.a.
- Per capita meat consumption: 32.1 kg/year (1961) to 62.75 kg/year (2019)
- Proteins interact with carbohydrates, fats, water, vitamins, minerals

Carbon Footprint of Broiler Farm: 7-10 kg CO₂ per EW

EW= Equivalent weight

https://www.intechopen.com/online-first/1193661

Impacts of climate change on broiler production

Nutritional manipulation for heat stress alleviation in poultry

- Promotes growth performance
- · Increases productivity
- · Anti-stress effects
- · Scavenges free radicals
- · Promotes antioxidant defense
- Anti-inflammatory effects
- Stimulates immunocompetence
- Regulates heat shock response
- Antimicrobial effects
- · Improves nutrient digestibility
- · Protects intestinal health
- Restores blood metabolites
- Promotes behavior and welfare
- Improves thermoregulatory response
- Reduces mortality

Sustainable Management of Poultry Slaughter

Plethora of nutritional components like vitamins, proteins, fats and minerals.

- bones, skin, feet, feather, head and blood: production of low trans
- vanaspati (fully or partially hydrogenated vegetable cooking oil);
- fertilizer with good proportion of zinc, manganese, copper and aminoacids;
- bioenergy
- biomedical (dietary supplements)
- cosmetics (skin care products, shampoos, hair conditioners)
- animal feed;
- pharmaceuticals
- food

Structure and chemical configuration of collagen, gelatin and keratin.

Int. J. Mol. Sci. 2023, 24(4), 3654; https://doi.org/10.3390/ijms24043654

ODOUR CONTROL

Poultry Farm: Odour and Green House Gases

Nitrogen-containing compounds

Sulfur containing compounds

Volatile fatty acids

Aromatic compounds

ammonia, methane, hydrogen sulfide, dimethylamine, carbon monoxide, carbon dioxide, mercaptans, volatile organic acids and phenolic compounds

Odour Control

Through destruction of microorganisms in livestock or inhibit enzymatic activity of microbes responsible for odour formation.

- 1. Odorant oxidizing agents (e.g. permanganate or ozone)
- 2. Reactive deodorants to inhibit their release
- 3. Masking agents: compounds with a pleasant smell;
- 4. Digestive agents: mixed cultures of bacteria, other microorganisms
- 5. Enzymes to degrade odorous compounds in livestock
- 6. Miscellaneous chemicals, bacteriocides, disinfectants and plant extracts,

Ammonia

Ammonia is one of the main odorants found in the exhaust air from poultry breeding houses. Its main source is the decomposition of urine, uric acid and nitrogenous compounds like proteins and amino acids.

Air cleaning technology to remove gas pollutant

Dietary	pulation		Mitigation technique	Mitigation potential	Operation cost	Application prospect
		1	Low crude protein diet	NH ₃ (9.2–23%) Odor (20–33%)	<0.5 \$ per pig; 9.5– 15\$ kg ⁻¹ NH ₃	Applicable to housed animals, source emission reduction; easy to
	man	2	Enzyme additives in feed	NH ₃ (15–30%) Odor (54%)	abated(Liu <i>et al.</i> , 2014; Zhang <i>et al.</i> , 2019)	implement and the lower cost of dietary structure change
iousing	lent 7	1	Separation of urine from feces	NH ₃ (10–50%) Odor (1–50%)	2-3 \$ per pig (Liu <i>et al.</i> , 2014)	
	agen	2	Adsorbents used as litter additive	NH ₃ (20.2–91%)VOCs(9–96%)	EUR 0.25–1.25 per pig (Campos <i>et al.</i> , 2004)	Applicable to various housed animals
In-l	mana	3	Indoor environment/manure surface spraying agent	Odor (60–80%)	-0.7\$ per pig (Liu et al., 2014)	
	2	1	Membrane-covered compost system	NH ₃ (58.64%) H ₂ S (38.13%)	6.9 € kg ⁻¹ NH₃ abated (Soto-Herranz et al., 2021)	Applied worldwide, and broad prospect
are	men	2	Reactor composting	NH ₃ (6.8–26.4%)	10.5\$ ton ⁻¹ (Liu <i>et al.</i> , 2020b)	Short composting cycle, strong adaptability, and broad prospect
Manu	nage	3	Slurry cover	NH ₃ (65–99.5%)Odor (39–91%)	2.2–9.8 \$ kg ⁻¹ NH ₃ abated (Zhang <i>et al.</i> , 2019)	Simple and cheap; easy to operation
		4	Slurry acidification	NH ₃ (65–88%)	0.8–1.5 \$ kg ⁻¹ NH ₃ abated (Zhang <i>et al.</i> , 2019)	Inhouse, storage tank, field applications, and broad prospect
d-of-pipe	ures	1	Acid scrubbing of the exhaust air from animal houses	NH ₃ (80-90%) Odor(29-34%) H ₂ S (>95%)	14.82 \$ per pig; 6 \$ kg ⁻¹ NH ₃ abated (Jacobsen, 2012:Dumont 2018)	Apply to high gas concentration, large air volume, and ammonia nitrogen recovery high
	leasi	2	Bioscrubbing of the exhaust air from animal houses	NH ₃ (80-95%) Odor(70-80%) VOCs (80-90%)	9–17 \$ per pig place (Dumont, 2018)	Smaller pressure drops, stable operation, hydrophilic substances reduced
En	a	3	Biofiltration of the exhaust air from animal houses or composting	NH ₃ (40-70%) Odor(40-60%) Xylene (>80 %)	EUR 5.1–6.3per pig place (Santonja <i>et al.</i> , 2017).	Nitrogen recovery, hydrophilic and hydrophobic substances reduced

Insecticides

• Biological Control Agents:

Bacillus thuringiensis israelensis (Bti): A microbial larvicide effective against fly larvae. It is non-toxic to poultry, humans, and beneficial insects.

Parasitic Wasps (e.g., Muscidifurax and Spalangia spp.): These natural predators control fly populations by parasitizing fly pupae.

• Chemical Insect Growth Regulators (IGRs):

Cyromazine: Specifically targets fly larvae, disrupting their development without harming adult flies, poultry, or humans.

Diflubenzuron: Inhibits chitin synthesis in larvae, preventing them from maturing. It's effective in manure management systems.

• Botanical Insecticides:

Neem-based Products (Azadirachtin): Acts as a growth regulator and repellent, with low toxicity to non-target species.

Essential Oils (e.g., Eucalyptus, Citronella, Lemongrass): Used as repellents, though less effective for large-scale infestations.

Physical and Environmental Management:

Regular Waste Management: Frequent removal and proper composting of chicken waste reduce breeding grounds.

- Lime (Calcium Hydroxide): Applying hydrated lime to waste alters pH, inhibiting fly larval development.
- Drying Agents (e.g., Zeolites): Reduce moisture content in manure, making it less suitable for fly breeding.
- Organic Compounds:

Spinosad: A natural insecticide derived from Saccharopolyspora spinosa, effective against adult flies and larvae with a good safety profile.

Recommended Approach:

Combine biological control, IGRs, and manure management for an Integrated Pest Management (IPM) strategy.

Avoid heavy reliance on chemical insecticides to prevent resistance development in fly populations.

Product name	Constituent	CAS No.*	Percentage
Formaldehyde 35%	Formaldehyde 35%	50-00-0	100
DDVP	Dichloro vinyl dimethyl phosphate	62-73-7	90
Olsozol	Ortho-dichlorbenzene	95-50-1	N/S
	M-cresol	108-39-4	N/S
	Methyl alcohol	67-56-1	N/S
Gramoxone inteon	Paraquat dichloride	1910-42-5	24
Baroclean	Benzaikonium chloride	264-151-6	50
Longlife	High boiling tar acids	84989-05-9	15~30
	Chlorinated xylenols	Mixture	N/S
	Sulphonic acid	27176-870	N/S

^{*}Chemical abstracts service number. Not specified.

Antibiotics Used in Poultry Industry

Antibiotics	Frequency	Percentage
Enrofloxacin	16	27.6
Gentamycin	10	17.2
Neoceryl [®]	21	36.2
Furazolidone	12	20.7
Colistin	3	5.2
Penicillin	9	15.5
Ciprofloxacin	5	8.6
Norfloxacin	3	5.2
Tylosin	9	15.5
NCO	6	10.3
Oxytetracycline	6	10.3
Doxycycline	5	8.6
Streptomycin	5	8.6
Tetracycline	1	1.7
Flumequine	2	3.5

Antibiotics

Time of antibiotic application	Generic name of the antibiotic	Reported reason for use	
Within first 10 days	Amoxicillin	To prevent bacterial infections	
Within first 10 days	Endocyn	To prevent fungal infections	
Anytime but especially in first 10 days	Oxytetracycline Hydrochloride	Growth promotion	
Second 10 days	Doxycycline	To prevent respiratory disease	
Day 18–20 (high use during winter)	Erythromycin Thiocyanate, Sulfadiazine Sodium, Trimethoprim composition	To prevent flu and cold	
During rainy season	Ciprofloxacin	To prevent <i>Gumboro</i> (Highly contagious acute viral infectious disease in chickens)	
When one or two poultry identified with symptoms	Ciprofloxacin	To prevent watery lime feces	

Livestock manure biorefinery for the production of value added products, energy, and organic fertilizer

nutrient

https://doi.org/10.1016/j.jclepro.2024.140858

Key aspects and limitation of gasification and combustion

Livestock Manure Management

Conclusions

Focus on selecting the right breed for your market

Implementing efficient management practices

Maintaining high quality standards

Optimizing feed usage

Managing disease prevention

Establishing strong market connections

Effectively marketing products to meet consumer demand while controlling costs across the entire production cycle.

